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Multisoliton complexes on a background
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We obtain solutions oM coupled nonlinear Schdinger equations that describe multisoliton complexes
(MCs) on a background. We present explicit multiparameter families of solutions and numerical simulations,
demonstrating specific features of MCs and their collisions. It is shown, in particular, that a MC on a back-
ground can have a complicated intensity profile due to a nonlinear superposition of pairs of bright and dark
single solitons.

PACS numbds): 42.65.Tg, 42.65.Jx

I. INTRODUCTION trapped ultracold gaklO] is one more example of a MC in
physics. More complicated objects are solitons in multicore

Multisoliton complexes(MCs) [1] are objects that can fiber deviced11] and incoherent solitonjg},12—14, where
appear in various physical problems. In simple terms, a multhe number of soliton components can be more than two. In
tisoliton complex is a self-localized state which is a nonlin-the latter case, the number of components can go up to in-
ear superposition of several fundamental solitons. By fundafinity [15]. In many cases multisoliton complexes appear in
mental solitonsee, e.g., Ref2]) we mean the single soliton conservative systems that can be Hamiltonian. However,
(i.e., the lowest nonlinear mogef the system under inves- generalization to nonconservative systems is also possible
tigation. The number of solitons in a complex depends on th§16].
nature of physical system as well as on the initial conditions. From a theoretical point of view, the most attractive case
Mathematically speaking, we will talk abodit fundamental is the integrable model of a coupled setMfNLSES, which
solitons all having the same spe@dg., parallel trajectorigs  admits exact solutions and, moreover, can be solved for ar-
and moving(or resting as a single complex. The value Nf  bitrary initial conditions. Quite a few interesting properties
can vary fromN=1 (one fundamental solitorand can take of this model have already been studied in a number of pub-
large values up to infinity. For a single nonlinear Sehro lications. These include unusual asymmetric profiles of these
dinger equation(NLSE) the systematic construction &  solitons, specific collision properties of MQg], etc. To
soliton solution with the same velocity has been done bymake a physical picture of a MC more clear, we can use a
Satsuma and YajimgB]. These solutions are also known as simple analogy: one fundamental soliton has the properties
higher-order soliton$2]. However, they are not stationary of a single particle, but multisoliton complexes have non-
and their shape evolves during propagation. The reason isivial internal structure like multiparticle objects such as an
that the interaction between the fundamental solitons in thigxciton or an atom.
case is coherent, i.e., phase dependent. It has been demon-In this paper we present a solution fidr coupled NLSEs
strated(see[4] and references thergithat stationary MC that describes multisoliton complexes on a background in
can, nevertheless, be constructed focoupled NLSEs. In media with either focusing or defocusing Kerr-type nonlin-
the latter case, the coherent interactions between differedarity. We demonstrate that these solutions are nonlinear su-
solitons in MC can be eliminated and the interference pheperpositions of fundamental nonlinear modes: inseparable
nomena are suppressed. pairs of bright and dark solitons. The pairs play the role of

There are various physical systems that can be describddndamental solitons in this particular problem. As follows
by a coupled set of nonlinear Schlinger-type equations. from our analysis, the transverse profile of the MC on the
The case of two coupled NLSEs have been studied in detabackground can be quite complicated and is described by
and various terms for solitons and MCs have been used imany parameters, including the amplitude of the back-
the existing literature. In optics, the simplest example is aground, the amplitudes of the fundamental solitons, and the
“vector soliton” in a birefringent fiber, which consists of relative distances between them. Our exact results include
two polarization components of the pulse that are bound toalso collisions between MCs on a background. We show that
gether by the nonlinearit{5,6]. A similar case is a soliton the reshaping of the MCs after collisions are characterized by
and its “shadow,” when the two components have indepenthe relative shifts of the pairs of bright and dark solitons.
dent phases and the weaker polarization component is lockeéthese distinctive features of incoherent solitons are illus-
in the potential created by the stronger compor@htSoli-  trated by numerical examples. Our solutions can be useful,
tons in nonlinear periodic structures, known as gap solitongor example, in the theory of dark incoherent solit¢ag].
[8], can be also described by the set of two coupled NLSEs. The paper is organized as following. We present the
A parametric interaction between the two waves at differenimathematical model in Sec. Il, and, for the sake of complete-
frequencies can result in their coupling and the formation ohess, we include in Sec. Il the relevant results from REf.
a soliton with two componen{®], which is another example for bright MCs, i.e., solutions with zero boundary conditions.
of a MC. A two component Bose-Einstein condensate in arhen, in Sec. IV we discuss the general properties of station-
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ary MCs existing on a background. In Sec. V we introduce and the number of equations are arbitrary independent pa-
sophisticated rotation transformation which allows us to exrameters has been derivgl. It has been shown that coher-
tend the technique developed for bright solitons, and obtaient and incoherent interactions between the fundamental
exact solutions for MCs with a nonzero background. Finally,solitons result in some unique features of the MC. As we

numerical examples are given in Sec. VI. mentioned earlier, in this paper we will concentrate on the
case where each component contains just one fundamental
II. MATHEMATICAL MODEL soliton, so that the internal interactions in the complex are
incoherent.

An incoherent soliton is a highly nontrivial example of a
MC. We will frame our analysis to this problem as it is the L. BRIGHT MC WITH ZERO BOUNDARY CONDITIONS
most representative one. The evolution of incoherent solitond!"

in @ medium with a Kerr-like nonlinearity can be described  Bright MC solutions of Eq(3) composed of orthogonally

by the following set of NLSE$4,18,19: polarized fundamental solutions can be found from the set of
linear equation$25,26]:
Y 1 P
oz T2 e T on()im=0. W Yoeetun 1
— +Fuj=—ej, (4)
where ¢, is the field in themth component of the beam m=1 kj+kn, j
(m=1,2,3...,M), z is the coordinate along the direction _
of propagationx is the transverse coordinate, and wheree;=; expﬁijrika?j/Z), and the shifted coordinates
" arex;=X—Xx; andz;=z—z; . This result comes from consid-
o= a 2 @ ering the MCs as generalized reflectionless potenfals.
iy mm Each fundamental soliton is characterized by the shifts along

the axes; andz; and by the wave numbég=r;+iu;. The
is the change of refractive index, induced by all Mecom-  amplitude of the fundamental soliton is relatedr{o while
ponents, where the,, are weighting coefficients. From the its motion in the transverse direction is determined by the
physical model it follows that all the,, should have the imaginary part,u;=tané;, where; is the angle of propa-
same sign,s=sgn(an,). In a self-focusing nonlinear me- gation relative to the axis. The coefficienty; can be arbi-
dium, s=+1, while in defocusing materia=—1. trary, but, in order to obtain the solutions in a symmetric

For further analysis it is convenient to rewrite E¢B.for ~ form, we have to choose them in a special Way24:

a set of normalized functions,(X,z) = V| @m| ¥m(X,2),

ouy, 1%y, % 2 . Xj:nl;lj Vbjm, (5)
IE"FE (9)(2 +SUmj:1 |U]| =0. ()

_ _ ~ wherebj, = (k;+k3)/(kj—kp), and the square root value is
WhenM =1, the set of equations reduces to a single nonlintaken on the branch with the argument in the limits
ear Schrdinger equation which is known to be completely (— 7/2 7/2).
integrable[20]. The inverse scattering techniqiST) for The solution of Eqs(4) and (5) describing multisoliton

the set of two equationd=2) has been developed as well complexes can be obtained in explicit fofd
[21]. Moreover, it has been shown that the coupled se¥l of

equations ¥1>2) is also completely integrab[@2,23. el
The results of the IST tell us that the solution for this U

integrable model consists of a number of solitons plus radia-

tion. The former is defined by the discrete part and the latter ©

by the continuous part of the IST spectrum. We are inter- U= CLFL(x,2)

ested in pure soliton solutions when the radiation is absent. .. TmoL LhLmeh

In general, the number of solitons might exceed the number

of equationaM. Stationary solutions are possible only whenwhere

all the fundamental solitons have the same velocity and each

of them is polarized ir(i.e., belongs tpa different compo- CL=Tmp, C{=2rijTmb,

nent, so that their total number is equaMo This is the case @

that we consider below. The collisions of MCs will also be _ i_ i

studied, but under the same assumption of orthogonal polar- FL=CosS,), FL=coshS).

:ijail::(gml\jl(?; all the fundamental solitons composing the COI'HereL refers to sets of indiced ¢,L,), and the summation

First, consider the case when the background is zer Joes over all possible permutations of soliton numbers be-

Then the bright solitons must be supported by a self—focusingwgr%nfghfngv% S;és' Then, the variables for each realization of

nonlinearity 6= +1). Corresponding MCs were studied ear-

lier, and exact solutions foM <4 have been presented in

explicit form [24]. Then, a solution describing propagation Tomp= 11 Cim+ So= > B > Bms
and collisions of bright MCs when the number of solitons jeliimel, mel, mel;

=07 ClFl(x,2),
U, -1 m—L © L(x:2)
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A Let us analyze the properties of the systé In our
S=S+i > @m—i > @jm, (8  problem, all the field changes correspond to solitons, and
mety meta thus are localized. Then, the boundary conditions are such
. — . . that the potential acquires a constant value at infinity, namel
where B; +iy,=k;x; +ikiz; /2 (with g; and y; real, ¢y V(x)ﬂvi atxﬂtooc.lThe case/,=0 corresponds toybright ’
=[bjm|, and ¢;=arg(1h;y,)/2. Note that onlyg; andy;  pcs with the solutions given by Eq&)—(8). On the other
depend on the coordinateg, ). All the other coefficients hand,V,#0 means that the field in at least one of the com-

are expressed in terms of the wave numberand constant  yonents does not vanish at infinity. In this case, mutual trap-
shifts in positions X; ,z;) of the M fundamental solitons. As ping of bright and dark solitons may occur.

the solution has translational symmetry along xteis, one The self-consistent potential is the same for all compo-
of the shifts can be fixed, so that the number of independenfents and thus we can apply the Sturm-Liouville theorem to
parameters controlling the multisoliton complex is12- 1. Eqg. (9). In particular, the two important properties are the
following: (i) bright fundamental solitons correspond to lo-
IV. STATIONARY MC SOLUTIONS ON A BACKGROUND calized eigenstates, withh,>—V,, and (i) only one
nonoscillatorydark modeis possible, with its eigenvalue lo-
cated exactly at the boundary between the discrete and con-
Ytinuous spectra, i.ehA,= —V,. Quite remarkably, the gen-

rs]yémtarnbetgc, fjegggpg;;llun?ﬁg \g"tgt tv(\)/? ge?b%aﬁgiterseral conclusions also hold for nonstationary MCs dynamics
Ve been fou : ry, variety of possi n involving soliton collisions, with the only requirement that

a background Is much W'de.r' In_deed, as we demonstrateﬁ%ere is no more than one bright soliton in any component.
above, each fundamental soliton in the complex must be COMELis is demonstrated below

trolled by two independent parameters. Moreover, there is an
additional characteristic in this problem, namely the ampli-
tude of the background. The method that we use in this paper V- SOLUTION FOR MC ON A BACKGROUND

gllows us to present a full multiparameter family of solu-  Ag has been demonstrated in the preceding section, a MC

tions. . ) on a nonoscillatory background should contain a dark mode
One of the interesting features of MCs on a backgroundyith an eigenvalue lying at the top of the effective potential

which follows from this analysis, is that they can be decom-g|| As a first step in constructing this solution, let us iden-

posed into_a nl_meer o_f elem_entary o_bjects. Each of them hancfy such mode in a bright MC with zero boundary condi-
two parts,(i) bright, or intensity peak in one component, andions \/,=0. Then, we take the expressions for a complex of
(i) dark, or a hole in the background. We note that from theoright solitons(6), and consider a limit

point of view of the IST such an object is still a single fun-

damental soliton, although physically it is a coupled set of Ky=ry— +0, (10)

bright and dark counterparts. When these objects are located

on top of each other, they comprise a nonlinear superpositiogo that the corresponding component profile will approach

which has a complicated transverse profile. Curiouslythat of a dark mode, provided that the limiting transforma-

enough, these simple objects, as well as their nonlinear syion is done properly. It is now convenient to return to the

perpositions, exist for both signs of the nonlinearisys  system of linear equationg}). We note that, from the ex-

+1. plicit solution (6)—(8), it follows that the amplitude of the
A useful complementary view of a multisoliton complex pseudodark mode is vanishingly smaliy,—0, which is

is to consider it as a self-induced optical waveguidle The  consistent with the fact that a bright MC does not contain

existence of the background does not change the concepfark solitons. As a result, the last linear equation in .

The outside part of the waveguide might have any constardecomes decoupled, and after enforcing the lith) we
refractive index. For simplicity, let us first consider station- haye

ary multicomponent evolution, which can be observed if all

the fundamental soliton velocities are zero, iig+0. Then, vy=—1-J. (11

the component fields are,(x,z) =U ,(x)exp(\n2), where

the real amplituded) ,, are determined from the set of ordi- At this stage of the calculations, we introduce the new func-
nary differential equations @m=<=M): tions

It has already been demonstrated[#8] that MCs can
exist on a constant background. However, until now onl

1 0°U,, Um(X,2) =um(X,2)/K,, (12
5 “ApUmtUpV(Xx)=0, ©)
2 x?

so thatJ=3M"le*v .. This sum depends only on the am-
plitudes of the other components, which in turn are found

which follows from the original systenf3). This can be from an independent system of linear equations, resulting

viewed as a linear problem of eigenfunctions and eigenval

ues. However, the potentiéad(x)=SEJ!\":1|UI-|2 must be self- from Eq. (4):

consistent. In general, the latter condition can be achieved in Mol ek, ok q

numerical modeling with the help of iterative schenia8]. ATy Lk =—e, (13
However, for the problem at hand we will be able to derive m=1 ijrk’r*n 2r; H :

exact analytical solutions due to the integrability of the origi-
nal Egs.(3). where lsjsM—-1.
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After finding the expression for the dark component pro- 10
file, we need to develop a special technique to construct so-
lutions for MCs with a nonzero background. As mentioned
earlier, the most nontrivial problem is how to satisfy the
self-consistency relation for the effective potential. To ad-
dress this issue, we note that the self-induced wavedoide

Total intensity
(]
T
|

potential wel) depends only on the mode intensities. Thus, -4 2 (a) 2 2 4
important information can be obtained by looking at the nor-
malized intensity profile of the pseudodark mode, which can 10
be found using Eq€11): |vy|?=1+J+J*+]|J|2. To calcu- z
late this value, we first multiply Eq13) by v}, then sum |5
over j and, finally, add a complex conjugate expression. % Sr I
Then, we arrive to the following equality: T // N
o O . 7 ~
M -4 -2 (b) o] 2 4
21 lvml?=1 whenky—0. (14) x
o
.. 0.50
This remarkable result demonstrates an intrinsic relation be- s
tween the intensities of bright and dark solitons. Moreover, £ 0.251 B
this relation opens up an opportunity to introduceotation s
transformationin functional space and construct solutions E
for MC on a background, with the dark component having a 900 " 2 (9 o : "

nonzero amplitude. Specifically, we can change the bright
soliton intensities in such a way that the new potential is
View=Vo+ Voq, Where a free parametgV,| is the back- FIG. 1. Three stationary solitons on a background in a self-
ground intensity. Then, by adjusting the propagation confocusing medium ¢=+1): (a) intensity profile;(b) bright soliton
stants, theself-consistency condition for the effective poten-profiles shown with solid, dashed, and dotted linesbackground
tial can be preservedand this is the principal feature of the intensity. The parameters for this simulation are the followikg:
introduced rotation transformation. Moreover, it is also pos-=1.5kz=3, kz=2,x;=—2,x;=0, x3=2.

sible to obtain a solution for aelf-defocusing mediuntri- )
nally, the resulting MC solution on background is Inoue[29]. When the number of componenikis more than

2, these pairs are combined into more complicated superpo-
Z)= 2 2 i _ sitions. . . . .
Un(X,2) =0m(x,2) VSlkn|"+ SVoexR(iVoz). (19 The bright solitons belonging to different components in-
teract incoherently due to the nature of the coupling term in
the model Eqgs(1). Compared to the situation considered in
the present paper, coherent coupling between the bright soli-
tons in one component is quite a different process, resulting,
for example, in spatial beatifd]. Another interesting fact to
note is that the “holes” in the background are black, not
the MC consists of a nonlinear superpositionf-1 soli- gray, solitons, Whgn their \{elocities are zero. Indeeq, as the
black component is the highest mode of the self-induced

tons and a plane wave in ti\dth component. It is also clear ide. th i th il h
that the plane wave must change its profile at the place\g’ave guide, there are ‘?,S T“af],y £€ros in the protile as the
number of lower-order “bright” modes, which i$1—1.

where the bright solitons are located. If the number of com-_l_h h . ted b ingle black solit
ponentsM, is 2, then it can be seen from Eq&4) and(15) €n, each zero IS created by a single black soliton.
that the solution is a nonlinear superposition of the dark and
the bright soliton parts. This superposition exist in pairs. In a VI. NUMERICAL EXAMPLES
self-focusing medium a “hole” on a background is compen- A simple example of a multisoliton complex on a back-
sated for by the higher amplitude of the corresponding bright P pi€ o . P

. : . ._ground, when the relative distances between the fundamental
soliton. On the other hand, pure bright solitons cannot exisP

in a defocusing material. and thev must be supported b thsolitons are large, is shown in Fig. 1. In this case, the pairs of

) 9 X y . bp Y Nark and bright solitons are asymptotically separated in the
waveguides created by the corresponding dark Coun'[erp"’lrttsr'ansverse direction and hardly interact with each other
The envelopes in a separated pair have the profiles '

Their profiles can be found using Eqd.6). Note that the

X

We recall that, according to E410), the pseudodark mode
wave number i%y,, = 0. Some limitations for the background
amplitude can be immediately obtained from Ed5): (i)
Vp=0 in a self-focusing mediumsE +1), and (i) Vo<
—max,|ky/2 in a defocusing materials& — 1).

As follows from the method of constructing the solution,

o — bright solitons belong to different components but the dark
U= €'7m " Vo%r s+ Vol K ~* seCH Bi), solitons are all in the same mode.
N _ (16) In general, the structure of the solution is more compli-
Uy =€"0*\sVo[rytanh( B) +iuml/Ky, . cated. A case where all the fundamental solitons are located

near to each other is shown in Fig. 2. The actual intensity
which are a known pair of dark and bright single solitons forprofile is determined by the soliton eigenvalues, or wave
the coupled set of Manakov equations, found previously bynumbers, and the relative distances between the pairs of dark
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FIG. 2. Multisoliton complex composed of the pairs of bright ~ FIG. 3. Multisoliton complex composed of the same pairs of
and dark solitons with the same eigenvalues as shown in Fig. 1, blfight and dark solitons as shown in Fig. 1, but with no relative
located closer togethex; =0.05,x,=0, x3=0.2. shifts, i.e.,x;=0.

and bright solitons. If the relative distances are nonzeropere the summation involves the fundamental solitons which
MCs are asymmetric, as demonstrated in Figs. 1 and 2, bygature in the collisions. When the colliding soliton number
they can be symmetric if there are no shifts between then comes from the righti.e., has a largex coordinate before
fundamental solitons. This is similar to the case of MCs withthe impac}, we putf;,=+1 while we setf;,=—1 when
zero background4]. from the left. Note that the presented expression is exact for
An example of a symmetric MC on a background isa separated fundamental soliton, because interactions be-
shown in Fig. 3. In this case, all relative shifts are equal toween the solitons in a MC may result in additional shifts.
zero. Further simplification appears when the eigenvalues algowever, if after a collision all the shifts calculated accord-
chosen in a special way, hamely, they are all multiples of the
consecutive integers. Then the intensity profile of the MC
becomes a seéHunction on a background and the solutions
coincide with those found if28].

VII. COLLISIONS OF MC ON A BACKGROUND

The numerical examples presented above are for the cast
of stationary MCs with zero velocity. When the velocity is
not zero, different MCs can collide, and these phenomena are
also described by our explicit solution. A numerical example
demonstrating the collision of two MCs on a background is
shown in Fig. 4. The presence of the background does not .
change the common rule: velocities of the MC after the col-
lision are the same as before the collision. Another principal
feature is that the multisoliton complexes change their shape
after collision and these changes are similar to those which
occur without the backgrounf4]. In the particular case
shown in Fig. 4, the multisoliton complex is almost decom-
posed into its basic nonlinear constituents, i.e., pairs of bright
and dark solitons. The acquired shifts along thexis of
each of the fundamental solitons are found to be

)

(17) FIG. 4. Collision of two and four component multisoliton com-

1
o == 2 fimIn(cjn). - C : _ _
Fj “m plexes existing on a background in a self-focusing medium.
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ing to Eq.(17) are the same, than no corrections are needed,

and the MC profile remains unchanged. This fact has been

confirmed by numerical simulations for bright MC4], but K

is also valid when the background is present. = /
The integrable model that we have used to describe the /

multisoliton complexes is unique in several aspects. Its ad- =— f

tage is that it all to write the soluti lyticall ’///////
vantage Is that It allows us to write the solutions analytically //”,'«

and that these solutions describe them completely. On the —

other hand, the soliton pairs in a multisoliton complex do not {//%é/??/// “
have any binding energy and in this sense they stay in the .
complex due to properly chosen initial conditions. If the non- //{/////i\ L
linearity is different from the Kerr-type, then the binding
energy will keep all soliton components in the complex

repel them), depending on the sign of the binding energy.
The case of saturable nonlinearity requires more study, but a ,
zero background case has been already investigated in Ref
[30]. It has been found that a MC becomes a nonstationary
oscillating beam after collisions.

3

K

Special case of only dark solitons © 5

Pure dark solitons, supported by defocusing nonlinearity »
(s=—1), were extensively investigated earlj&d]. Our so-
lution (15) can be reduced to describe such a case, giving a -~
link to previous studies. To do this, we choose the wave °
numbers according t¢20], i.e. in such a way thajV,| FIG. 5. Collision of three purely dark solitons in a defocusing
=|kml?, where I=m<M. Then, the amplitudes of all the medium.
bright solitons reduce to zero, and the resulting expression

gives a multidark soliton solution. An example of three darkcateéd and is described by many parameters, including the
soliton collisions is presented in Fig. 5. amplitudes of the solitons, relative distances between them,

and the background intensity. Our exact results also describe
collisions between MCs on a background and their subse-
Vill. CONCLUSIONS quent reshaping, which is characteri%ed by the relative shifts

In Conc|usi0n, we have obtained a solution Mrcoup|ed of the pail’S of brlght and dark solitons. These distinctive

nonlinear Schidinger equations that describes staﬁonaryfeatures of incoherent solitons are illustrated by numerical

multisoliton complexes in media with a Kerr-type nonlinear- €xa@mples.

ity. A particular case is multisoliton complexes on a back-

ground, which can exist both in self-focusing and defocusing

media. The solutions are formed as nonlinear superpositions The authors are part of the Australian Photonics CRC. We

of pairs of bright and dark solitons located close to eachare grateful to Dr. Ankiewicz for a critical reading of this

other. The transverse profile of a MC can be quite compli-nanuscript.

of
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