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Multisoliton complexes on a background
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Australian National University, Canberra ACT 0200, Australia
~Received 15 September 1999!

We obtain solutions ofM coupled nonlinear Schro¨dinger equations that describe multisoliton complexes
~MCs! on a background. We present explicit multiparameter families of solutions and numerical simulations,
demonstrating specific features of MCs and their collisions. It is shown, in particular, that a MC on a back-
ground can have a complicated intensity profile due to a nonlinear superposition of pairs of bright and dark
single solitons.

PACS number~s!: 42.65.Tg, 42.65.Jx
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I. INTRODUCTION

Multisoliton complexes~MCs! @1# are objects that can
appear in various physical problems. In simple terms, a m
tisoliton complex is a self-localized state which is a nonl
ear superposition of several fundamental solitons. By fun
mental soliton~see, e.g., Ref.@2#! we mean the single soliton
~i.e., the lowest nonlinear mode! of the system under inves
tigation. The number of solitons in a complex depends on
nature of physical system as well as on the initial conditio
Mathematically speaking, we will talk aboutN fundamental
solitons all having the same speed~e.g., parallel trajectories!,
and moving~or resting! as a single complex. The value ofN
can vary fromN51 ~one fundamental soliton! and can take
large values up to infinity. For a single nonlinear Sch¨-
dinger equation~NLSE! the systematic construction ofN
soliton solution with the same velocity has been done
Satsuma and Yajima@3#. These solutions are also known
higher-order solitons@2#. However, they are not stationar
and their shape evolves during propagation. The reaso
that the interaction between the fundamental solitons in
case is coherent, i.e., phase dependent. It has been de
strated~see @4# and references therein! that stationary MC
can, nevertheless, be constructed forN coupled NLSEs. In
the latter case, the coherent interactions between diffe
solitons in MC can be eliminated and the interference p
nomena are suppressed.

There are various physical systems that can be descr
by a coupled set of nonlinear Schro¨dinger-type equations
The case of two coupled NLSEs have been studied in de
and various terms for solitons and MCs have been use
the existing literature. In optics, the simplest example i
‘‘vector soliton’’ in a birefringent fiber, which consists o
two polarization components of the pulse that are bound
gether by the nonlinearity@5,6#. A similar case is a soliton
and its ‘‘shadow,’’ when the two components have indep
dent phases and the weaker polarization component is lo
in the potential created by the stronger component@7#. Soli-
tons in nonlinear periodic structures, known as gap solit
@8#, can be also described by the set of two coupled NLS
A parametric interaction between the two waves at differ
frequencies can result in their coupling and the formation
a soliton with two components@9#, which is another example
of a MC. A two component Bose-Einstein condensate i
PRE 611063-651X/2000/61~5!/5893~7!/$15.00
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trapped ultracold gas@10# is one more example of a MC in
physics. More complicated objects are solitons in multico
fiber devices@11# and incoherent solitons@4,12–14#, where
the number of soliton components can be more than two
the latter case, the number of components can go up to
finity @15#. In many cases multisoliton complexes appear
conservative systems that can be Hamiltonian. Howe
generalization to nonconservative systems is also poss
@16#.

From a theoretical point of view, the most attractive ca
is the integrable model of a coupled set ofM NLSEs, which
admits exact solutions and, moreover, can be solved for
bitrary initial conditions. Quite a few interesting propertie
of this model have already been studied in a number of p
lications. These include unusual asymmetric profiles of th
solitons, specific collision properties of MCs@4#, etc. To
make a physical picture of a MC more clear, we can us
simple analogy: one fundamental soliton has the proper
of a single particle, but multisoliton complexes have no
trivial internal structure like multiparticle objects such as
exciton or an atom.

In this paper we present a solution forM coupled NLSEs
that describes multisoliton complexes on a background
media with either focusing or defocusing Kerr-type nonli
earity. We demonstrate that these solutions are nonlinea
perpositions of fundamental nonlinear modes: insepara
pairs of bright and dark solitons. The pairs play the role
fundamental solitons in this particular problem. As follow
from our analysis, the transverse profile of the MC on t
background can be quite complicated and is described
many parameters, including the amplitude of the ba
ground, the amplitudes of the fundamental solitons, and
relative distances between them. Our exact results incl
also collisions between MCs on a background. We show
the reshaping of the MCs after collisions are characterized
the relative shifts of the pairs of bright and dark soliton
These distinctive features of incoherent solitons are ill
trated by numerical examples. Our solutions can be use
for example, in the theory of dark incoherent solitons@17#.

The paper is organized as following. We present
mathematical model in Sec. II, and, for the sake of comple
ness, we include in Sec. III the relevant results from Ref.@1#
for bright MCs, i.e., solutions with zero boundary condition
Then, in Sec. IV we discuss the general properties of stat
5893 ©2000 The American Physical Society
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5894 PRE 61ANDREY A. SUKHORUKOV AND NAIL N. AKHMEDIEV
ary MCs existing on a background. In Sec. V we introduc
sophisticated rotation transformation which allows us to
tend the technique developed for bright solitons, and ob
exact solutions for MCs with a nonzero background. Fina
numerical examples are given in Sec. VI.

II. MATHEMATICAL MODEL

An incoherent soliton is a highly nontrivial example of
MC. We will frame our analysis to this problem as it is th
most representative one. The evolution of incoherent solit
in a medium with a Kerr-like nonlinearity can be describ
by the following set of NLSEs@4,18,19#:

i
]cm

]z
1

1

2

]2cm

]x2
1dn~ I !cm50, ~1!

where cm is the field in themth component of the beam
(m51,2,3, . . . ,M ), z is the coordinate along the directio
of propagation,x is the transverse coordinate, and

dn~ I !5 (
m51

M

amucmu2 ~2!

is the change of refractive index, induced by all theM com-
ponents, where theam are weighting coefficients. From th
physical model it follows that all theam should have the
same sign,s5sgn(am). In a self-focusing nonlinear me
dium, s511, while in defocusing material,s521.

For further analysis it is convenient to rewrite Eqs.~1! for
a set of normalized functionsum(x,z)5Auamucm(x,z),

i
]um

]z
1

1

2

]2um

]x2
1sum(

j 51

M

uuj u250. ~3!

WhenM51, the set of equations reduces to a single non
ear Schro¨dinger equation which is known to be complete
integrable@20#. The inverse scattering technique~IST! for
the set of two equations (M52) has been developed as we
@21#. Moreover, it has been shown that the coupled set oM
equations (M.2) is also completely integrable@22,23#.

The results of the IST tell us that the solution for th
integrable model consists of a number of solitons plus ra
tion. The former is defined by the discrete part and the la
by the continuous part of the IST spectrum. We are int
ested in pure soliton solutions when the radiation is abs
In general, the number of solitons might exceed the num
of equationsM. Stationary solutions are possible only wh
all the fundamental solitons have the same velocity and e
of them is polarized in~i.e., belongs to! a different compo-
nent, so that their total number is equal toM. This is the case
that we consider below. The collisions of MCs will also b
studied, but under the same assumption of orthogonal po
izations of all the fundamental solitons composing the c
liding MCs.

First, consider the case when the background is z
Then the bright solitons must be supported by a self-focus
nonlinearity (s511). Corresponding MCs were studied ea
lier, and exact solutions forM<4 have been presented
explicit form @24#. Then, a solution describing propagatio
and collisions of bright MCs when the number of solito
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and the number of equations are arbitrary independent
rameters has been derived@1#. It has been shown that cohe
ent and incoherent interactions between the fundame
solitons result in some unique features of the MC. As
mentioned earlier, in this paper we will concentrate on
case where each component contains just one fundam
soliton, so that the internal interactions in the complex
incoherent.

III. BRIGHT MC WITH ZERO BOUNDARY CONDITIONS

Bright MC solutions of Eq.~3! composed of orthogonally
polarized fundamental solutions can be found from the se
linear equations@25,26#:

(
m51

M ejem* um

kj1km*
1

1

2r j
uj52ej , ~4!

where ej5x j exp(kjx̄j1ikj
2z̄j /2), and the shifted coordinate

arex̄ j5x2xj andz̄j5z2zj . This result comes from consid
ering the MCs as generalized reflectionless potentials@27#.
Each fundamental soliton is characterized by the shifts al
the axesxj andzj and by the wave numberkj5r j1 im j . The
amplitude of the fundamental soliton is related tor j , while
its motion in the transverse direction is determined by
imaginary part,m j5tanu j , whereu j is the angle of propa-
gation relative to thez axis. The coefficientsx j can be arbi-
trary, but, in order to obtain the solutions in a symmet
form, we have to choose them in a special way@1,24#:

x j5 )
mÞ j

Abjm, ~5!

wherebjm5(kj1km* )/(kj2km), and the square root value i
taken on the branch with the argument in the limits
(2p/2,p/2).

The solution of Eqs.~4! and ~5! describing multisoliton
complexes can be obtained in explicit form@1#

uj5
eig j

U (
$1, . . . ,j 21,j 11, . . . ,M %→L

CL
j FL

j ~x,z!,

~6!

U5 (
$1, . . . ,M %→L

CLFL~x,z!,

where

CL5Tmb , CL
j 52r jx jTmb ,

~7!
FL5cosh~Sb!, FL

j 5cosh~Sb
j !.

HereL refers to sets of indices (L1 ,L2), and the summation
goes over all possible permutations of soliton numbers
tween the two sets. Then, the variables for each realizatio
L are found to be

Tmb5 )
j PL1 ;mPL2

cjm , Sb5 (
mPL1

bm2 (
mPL2

bm ,
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PRE 61 5895MULTISOLITON COMPLEXES ON A BACKGROUND
Sb
j 5Sb1 i (

mPL1

w jm2 i (
mPL2

w jm , ~8!

where b j1 ig j5kj x̄j1 ik j
2z̄j /2 ~with b j and g j real!, cjm

5ubjmu, and w jm5arg(1/bjm)/2. Note that onlyb j and g j
depend on the coordinates (x,z). All the other coefficients
are expressed in terms of the wave numberskj and constant
shifts in positions (xj ,zj ) of the M fundamental solitons. As
the solution has translational symmetry along thex axis, one
of the shifts can be fixed, so that the number of independ
parameters controlling the multisoliton complex is 2M21.

IV. STATIONARY MC SOLUTIONS ON A BACKGROUND

It has already been demonstrated in@28# that MCs can
exist on a constant background. However, until now o
symmetric, sech-type solutions with two free paramet
have been found@28#. Clearly, the variety of possible MC o
a background is much wider. Indeed, as we demonstr
above, each fundamental soliton in the complex must be c
trolled by two independent parameters. Moreover, there is
additional characteristic in this problem, namely the amp
tude of the background. The method that we use in this pa
allows us to present a full multiparameter family of sol
tions.

One of the interesting features of MCs on a backgrou
which follows from this analysis, is that they can be deco
posed into a number of elementary objects. Each of them
two parts,~i! bright, or intensity peak in one component, a
~ii ! dark, or a hole in the background. We note that from
point of view of the IST such an object is still a single fu
damental soliton, although physically it is a coupled set
bright and dark counterparts. When these objects are loc
on top of each other, they comprise a nonlinear superpos
which has a complicated transverse profile. Curiou
enough, these simple objects, as well as their nonlinear
perpositions, exist for both signs of the nonlinearity,s5
61.

A useful complementary view of a multisoliton comple
is to consider it as a self-induced optical waveguide@4#. The
existence of the background does not change the conc
The outside part of the waveguide might have any cons
refractive index. For simplicity, let us first consider statio
ary multicomponent evolution, which can be observed if
the fundamental soliton velocities are zero, i.e.,m j50. Then,
the component fields areum(x,z)5Um(x)exp(ilmz), where
the real amplitudesUm are determined from the set of ord
nary differential equations (1<m<M ):

1

2

]2Um

]x2
2lmUm1UmV~x!50, ~9!

which follows from the original system~3!. This can be
viewed as a linear problem of eigenfunctions and eigen
ues. However, the potentialV(x)5s( j 51

M uuj u2 must be self-
consistent. In general, the latter condition can be achieve
numerical modeling with the help of iterative schemes@30#.
However, for the problem at hand we will be able to deri
exact analytical solutions due to the integrability of the ori
nal Eqs.~3!.
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Let us analyze the properties of the system~9!. In our
problem, all the field changes correspond to solitons,
thus are localized. Then, the boundary conditions are s
that the potential acquires a constant value at infinity, nam
V(x)→V0 at x→6`. The caseV050 corresponds to brigh
MCs, with the solutions given by Eqs.~6!–~8!. On the other
hand,V0Þ0 means that the field in at least one of the co
ponents does not vanish at infinity. In this case, mutual tr
ping of bright and dark solitons may occur.

The self-consistent potential is the same for all comp
nents, and thus we can apply the Sturm-Liouville theorem
Eq. ~9!. In particular, the two important properties are t
following: ~i! bright fundamental solitons correspond to l
calized eigenstates, withlm.2V0, and ~ii ! only one
nonoscillatorydark modeis possible, with its eigenvalue lo
cated exactly at the boundary between the discrete and
tinuous spectra, i.e.,lm52V0. Quite remarkably, the gen
eral conclusions also hold for nonstationary MCs dynam
involving soliton collisions, with the only requirement tha
there is no more than one bright soliton in any compone
This is demonstrated below.

V. SOLUTION FOR MC ON A BACKGROUND

As has been demonstrated in the preceding section, a
on a nonoscillatory background should contain a dark m
with an eigenvalue lying at the top of the effective potent
well. As a first step in constructing this solution, let us ide
tify such mode in a bright MC with zero boundary cond
tions,V050. Then, we take the expressions for a complex
bright solitons~6!, and consider a limit

kM5r M→10, ~10!

so that the corresponding component profile will approa
that of a dark mode, provided that the limiting transform
tion is done properly. It is now convenient to return to t
system of linear equations~4!. We note that, from the ex
plicit solution ~6!–~8!, it follows that the amplitude of the
pseudodark mode is vanishingly small,uM→0, which is
consistent with the fact that a bright MC does not cont
dark solitons. As a result, the last linear equation in Eq.~4!
becomes decoupled, and after enforcing the limit~10! we
have

vM5212J. ~11!

At this stage of the calculations, we introduce the new fu
tions

vm~x,z!5um~x,z!/km* , ~12!

so thatJ5(m51
M21em* vm . This sum depends only on the am

plitudes of the other components, which in turn are fou
from an independent system of linear equations, resul
from Eq. ~4!:

(
m51

M21 ejem* vmkm*

kj1km*
1

1

2r j
v j kj* 52ej , ~13!

where 1< j <M21.
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5896 PRE 61ANDREY A. SUKHORUKOV AND NAIL N. AKHMEDIEV
After finding the expression for the dark component p
file, we need to develop a special technique to construct
lutions for MCs with a nonzero background. As mention
earlier, the most nontrivial problem is how to satisfy t
self-consistency relation for the effective potential. To a
dress this issue, we note that the self-induced waveguide~or
potential well! depends only on the mode intensities. Th
important information can be obtained by looking at the n
malized intensity profile of the pseudodark mode, which c
be found using Eqs.~11!: uvMu2511J1J* 1uJu2. To calcu-
late this value, we first multiply Eq.~13! by v j* , then sum
over j and, finally, add a complex conjugate expressi
Then, we arrive to the following equality:

(
m51

M

uvmu251 whenkM→0. ~14!

This remarkable result demonstrates an intrinsic relation
tween the intensities of bright and dark solitons. Moreov
this relation opens up an opportunity to introduce arotation
transformation in functional space and construct solutio
for MC on a background, with the dark component havin
nonzero amplitude. Specifically, we can change the br
soliton intensities in such a way that the new potentia
Vnew5V01Vold , where a free parameteruV0u is the back-
ground intensity. Then, by adjusting the propagation c
stants, theself-consistency condition for the effective pote
tial can be preserved, and this is the principal feature of th
introduced rotation transformation. Moreover, it is also p
sible to obtain a solution for aself-defocusing medium. Fi-
nally, the resulting MC solution on background is

um~x,z!5vm~x,z!Asukmu21sV0exp~ iV0z!. ~15!

We recall that, according to Eq.~10!, the pseudodark mod
wave number iskM50. Some limitations for the backgroun
amplitude can be immediately obtained from Eq.~15!: ~i!
V0>0 in a self-focusing medium (s511), and ~ii ! V0<
2maxmukmu2 in a defocusing material (s521).

As follows from the method of constructing the solutio
the MC consists of a nonlinear superposition ofM21 soli-
tons and a plane wave in theM th component. It is also clea
that the plane wave must change its profile at the pla
where the bright solitons are located. If the number of co
ponents,M, is 2, then it can be seen from Eqs.~14! and~15!
that the solution is a nonlinear superposition of the dark
the bright soliton parts. This superposition exist in pairs. I
self-focusing medium a ‘‘hole’’ on a background is compe
sated for by the higher amplitude of the corresponding bri
soliton. On the other hand, pure bright solitons cannot e
in a defocusing material, and they must be supported by
waveguides created by the corresponding dark counterp
The envelopes in a separated pair have the profiles

um5eigm1 iV0zr mAs1sV0ukmu22 sech~bm!,
~16!

uM5eiV0zAsV0@r m tanh~bm!1 imm#/km* .

which are a known pair of dark and bright single solitons
the coupled set of Manakov equations, found previously
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Inoue@29#. When the number of componentsM is more than
2, these pairs are combined into more complicated supe
sitions.

The bright solitons belonging to different components
teract incoherently due to the nature of the coupling term
the model Eqs.~1!. Compared to the situation considered
the present paper, coherent coupling between the bright
tons in one component is quite a different process, result
for example, in spatial beating@1#. Another interesting fact to
note is that the ‘‘holes’’ in the background are black, n
gray, solitons, when their velocities are zero. Indeed, as
black component is the highest mode of the self-induc
wave guide, there are as many zeros in the profile as
number of lower-order ‘‘bright’’ modes, which isM21.
Then, each zero is created by a single black soliton.

VI. NUMERICAL EXAMPLES

A simple example of a multisoliton complex on a bac
ground, when the relative distances between the fundame
solitons are large, is shown in Fig. 1. In this case, the pair
dark and bright solitons are asymptotically separated in
transverse direction and hardly interact with each oth
Their profiles can be found using Eqs.~16!. Note that the
bright solitons belong to different components but the d
solitons are all in the same mode.

In general, the structure of the solution is more comp
cated. A case where all the fundamental solitons are loca
near to each other is shown in Fig. 2. The actual inten
profile is determined by the soliton eigenvalues, or wa
numbers, and the relative distances between the pairs of

FIG. 1. Three stationary solitons on a background in a s
focusing medium (s511): ~a! intensity profile;~b! bright soliton
profiles shown with solid, dashed, and dotted lines;~c! background
intensity. The parameters for this simulation are the following:k1

51.5, k253, k352, x1522, x250, x352.
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PRE 61 5897MULTISOLITON COMPLEXES ON A BACKGROUND
and bright solitons. If the relative distances are nonze
MCs are asymmetric, as demonstrated in Figs. 1 and 2,
they can be symmetric if there are no shifts between
fundamental solitons. This is similar to the case of MCs w
zero background@4#.

An example of a symmetric MC on a background
shown in Fig. 3. In this case, all relative shifts are equa
zero. Further simplification appears when the eigenvalues
chosen in a special way, namely, they are all multiples of
consecutive integers. Then the intensity profile of the M
becomes a sech2 function on a background and the solutio
coincide with those found in@28#.

VII. COLLISIONS OF MC ON A BACKGROUND

The numerical examples presented above are for the
of stationary MCs with zero velocity. When the velocity
not zero, different MCs can collide, and these phenomena
also described by our explicit solution. A numerical exam
demonstrating the collision of two MCs on a background
shown in Fig. 4. The presence of the background does
change the common rule: velocities of the MC after the c
lision are the same as before the collision. Another princi
feature is that the multisoliton complexes change their sh
after collision and these changes are similar to those wh
occur without the background@4#. In the particular case
shown in Fig. 4, the multisoliton complex is almost deco
posed into its basic nonlinear constituents, i.e., pairs of br
and dark solitons. The acquired shifts along thex axis of
each of the fundamental solitons are found to be

dxj5
1

r j
(
m

f jm ln~cjm!. ~17!

FIG. 2. Multisoliton complex composed of the pairs of brig
and dark solitons with the same eigenvalues as shown in Fig. 1
located closer together:x150.05,x250, x350.2.
,
ut
e

o
re
e

se

re
e
s
ot
l-
l
e
h

-
ht

Here the summation involves the fundamental solitons wh
feature in the collisions. When the colliding soliton numb
m comes from the right~i.e., has a largerx coordinate before
the impact!, we put f jm511 while we setf jm521 when
from the left. Note that the presented expression is exact
a separated fundamental soliton, because interactions
tween the solitons in a MC may result in additional shif
However, if after a collision all the shifts calculated accor

ut

FIG. 3. Multisoliton complex composed of the same pairs
bright and dark solitons as shown in Fig. 1, but with no relat
shifts, i.e.,xj[0.

FIG. 4. Collision of two and four component multisoliton com
plexes existing on a background in a self-focusing medium.
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5898 PRE 61ANDREY A. SUKHORUKOV AND NAIL N. AKHMEDIEV
ing to Eq.~17! are the same, than no corrections are need
and the MC profile remains unchanged. This fact has b
confirmed by numerical simulations for bright MCs@4#, but
is also valid when the background is present.

The integrable model that we have used to describe
multisoliton complexes is unique in several aspects. Its
vantage is that it allows us to write the solutions analytica
and that these solutions describe them completely. On
other hand, the soliton pairs in a multisoliton complex do n
have any binding energy and in this sense they stay in
complex due to properly chosen initial conditions. If the no
linearity is different from the Kerr-type, then the bindin
energy will keep all soliton components in the complex~or
repel them!, depending on the sign of the binding energ
The case of saturable nonlinearity requires more study, b
zero background case has been already investigated in
@30#. It has been found that a MC becomes a nonstation
oscillating beam after collisions.

Special case of only dark solitons

Pure dark solitons, supported by defocusing nonlinea
(s521), were extensively investigated earlier@31#. Our so-
lution ~15! can be reduced to describe such a case, givin
link to previous studies. To do this, we choose the wa
numbers according to@20#, i.e. in such a way thatuV0u
5ukmu2, where 1<m,M . Then, the amplitudes of all th
bright solitons reduce to zero, and the resulting express
gives a multidark soliton solution. An example of three da
soliton collisions is presented in Fig. 5.

VIII. CONCLUSIONS

In conclusion, we have obtained a solution forM coupled
nonlinear Schro¨dinger equations that describes stationa
multisoliton complexes in media with a Kerr-type nonlinea
ity. A particular case is multisoliton complexes on a bac
ground, which can exist both in self-focusing and defocus
media. The solutions are formed as nonlinear superposit
of pairs of bright and dark solitons located close to ea
other. The transverse profile of a MC can be quite com
.
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cated and is described by many parameters, including
amplitudes of the solitons, relative distances between th
and the background intensity. Our exact results also desc
collisions between MCs on a background and their sub
quent reshaping, which is characterized by the relative sh
of the pairs of bright and dark solitons. These distincti
features of incoherent solitons are illustrated by numer
examples.
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FIG. 5. Collision of three purely dark solitons in a defocusi
medium.
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